skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ledoux, Elissa D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work studies upper-limb impairment resulting from stroke or traumatic brain injury and presents a simple technological solution for a subset of patients: a soft, active stretching aid for at-home use. To better understand the issues associated with existing associated rehabilitation devices, customer discovery conversations were conducted with 153 people in the healthcare ecosystem (60 patients, 30 caregivers, and 63 medical providers). These patients fell into two populations: spastic (stiff, clenched hands) and flaccid (limp hands). Focusing on the first category, a set of design constraints was developed based on the information collected from the customer discovery. With these constraints in mind, a powered wrist-hand stretching orthosis (exoskeleton) was designed and prototyped as a preclinical study (T0 basic science research) to aid in recovery. The orthosis was tested on two patients for proof-of-concept, one survivor of stroke and one of traumatic brain injury. The prototype was able to consistently open both patients’ hands. A mathematical model was developed to characterize joint stiffness based on experimental testing. Donning and doffing times for the prototype averaged 76 and 12.5 s, respectively, for each subject unassisted. This compared favorably to times shown in the literature. This device benefits from simple construction and low-cost materials and is envisioned to become a therapy device accessible to patients in the home. This work lays the foundation for phase 1 clinical trials and further device development. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  2. Stroke causes neurological and physical impairment in millions of people around the world every year. To better comprehend the upper-limb needs and challenges stroke survivors face and the issues associated with existing technology and formulate ideas for a technological solution, the authors conversed with 153 members of the ecosystem (60 neuro patients, 30 caregivers, and 63 medical providers). Patients fell into two populations depending on their upper-limb impairment: spastic (stiff, clenched hands) and flaccid (limp hands). For this work, the authors chose to focus on the second category and developed a set of design constraints based on the information collected through customer discovery. With these in mind, they designed and prototyped a 3D-printed powered wrist–hand grasping orthosis (exoskeleton) to aid in recovery. The orthosis is easily custom-sized based on two parameters and derived anatomical relationships. The researchers tested the prototype on a survivor of stroke and modeled the kinematic behavior of the orthosis with and without load. The prototype neared or exceeded the target design constraints and was able to grasp objects consistently and stably, as well as exercise the patients’ hands. In particular, donning time was only 42 s, as compared to the next fastest time of 3 min reported in literature. This device has the potential for effective neurorehabilitation in a home setting, and it lays the foundation for clinical trials and further device development. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025